PrepTest 94+, Section 3, Question 27
Organic chemist Larry Koskan's inspiration arrived in the mid-1980s, when he read a report by marine biologists describing how oyster shells grow. It was known that oysters secrete calcium carbonate as an essential constituent of their hardened exteriors, but the biologists discovered that they also produce a special protein-based agent that molds the mineral into their shells' characteristic shape.
At the time, Koskan was studying the properties of water-soluble polyacrylates. Among other things, these widely used additives help to stem the buildup of damaging mineral-scale deposits (carbonate and sulphate compounds) on the surfaces of industrial water-treatment equipment. What Koskan realized was that the agent produced by the oysters—polyaspartate—inhibits the formation of calcium carbonate and could also therefore control scale. Polyaspartate mimics the scale-inhibiting activity of polyacrylates because it has a similar chemical structure. But because the backbone of polyaspartate is made of peptides (chains of amino acids) rather than the hydrocarbon compounds that constitute polyacrylates' backbone, it is subject to bacterial action (i.e., it is biodegradable).
Polyacrylates, inexpensive and versatile chemicals, are easy to manufacture and process. In laundry detergents, they act as dispersants that keep dirt suspended in the wash water. As a recent alternative to phosphates, which, via wastewater, pollute surface waters, some half a billion pounds of polyacrylates are used in detergents worldwide every year. Additionally, some polyacrylates have chemical configurations with a tremendous affinity for water, making them ideal in superabsorbent materials for disposable products like baby diapers, which currently account for around 2 billion pounds in annual production of polyacrylates. The trouble is, polyacrylates last virtually forever, and these vast quantities of the highly stable substance are being discarded in landfills.
With requests by consumer products companies for environmentally friendly products growing rapidly, Koskan started his own small company and began researching cost-effective ways of producing polyaspartate for industrial use. Soon, leading chemical companies also began researching the issue, with the consensus being that polyaspartate was the most suitable replacement for polyacrylates. Unfortunately, as with many emerging technologies that lack a supporting infrastructure, polyaspartate's price was estimated to be four to five times that of the high-volume-production alternative. Given this, the consumer products industry lost interest in the technology, and the chemical industry shelved it. Koskan's company, however, believing that polyaspartate could nonetheless be market-competitive on its own merits, decided to persevere and focus on specialty application niches. Polyaspartate has since shown unparalleled success at eliminating scale in offshore oil production equipment and is being used by the farming industry to keep chemical fertilizers in the soil longer, reducing pollution of groundwater by the fertilizers. If Koskan's company can show continued success, it may yet help enliven an environmental chemistry sector saddled with a reputation for ineffectiveness and high cost.
Organic chemist Larry Koskan's inspiration arrived in the mid-1980s, when he read a report by marine biologists describing how oyster shells grow. It was known that oysters secrete calcium carbonate as an essential constituent of their hardened exteriors, but the biologists discovered that they also produce a special protein-based agent that molds the mineral into their shells' characteristic shape.
At the time, Koskan was studying the properties of water-soluble polyacrylates. Among other things, these widely used additives help to stem the buildup of damaging mineral-scale deposits (carbonate and sulphate compounds) on the surfaces of industrial water-treatment equipment. What Koskan realized was that the agent produced by the oysters—polyaspartate—inhibits the formation of calcium carbonate and could also therefore control scale. Polyaspartate mimics the scale-inhibiting activity of polyacrylates because it has a similar chemical structure. But because the backbone of polyaspartate is made of peptides (chains of amino acids) rather than the hydrocarbon compounds that constitute polyacrylates' backbone, it is subject to bacterial action (i.e., it is biodegradable).
Polyacrylates, inexpensive and versatile chemicals, are easy to manufacture and process. In laundry detergents, they act as dispersants that keep dirt suspended in the wash water. As a recent alternative to phosphates, which, via wastewater, pollute surface waters, some half a billion pounds of polyacrylates are used in detergents worldwide every year. Additionally, some polyacrylates have chemical configurations with a tremendous affinity for water, making them ideal in superabsorbent materials for disposable products like baby diapers, which currently account for around 2 billion pounds in annual production of polyacrylates. The trouble is, polyacrylates last virtually forever, and these vast quantities of the highly stable substance are being discarded in landfills.
With requests by consumer products companies for environmentally friendly products growing rapidly, Koskan started his own small company and began researching cost-effective ways of producing polyaspartate for industrial use. Soon, leading chemical companies also began researching the issue, with the consensus being that polyaspartate was the most suitable replacement for polyacrylates. Unfortunately, as with many emerging technologies that lack a supporting infrastructure, polyaspartate's price was estimated to be four to five times that of the high-volume-production alternative. Given this, the consumer products industry lost interest in the technology, and the chemical industry shelved it. Koskan's company, however, believing that polyaspartate could nonetheless be market-competitive on its own merits, decided to persevere and focus on specialty application niches. Polyaspartate has since shown unparalleled success at eliminating scale in offshore oil production equipment and is being used by the farming industry to keep chemical fertilizers in the soil longer, reducing pollution of groundwater by the fertilizers. If Koskan's company can show continued success, it may yet help enliven an environmental chemistry sector saddled with a reputation for ineffectiveness and high cost.
Organic chemist Larry Koskan's inspiration arrived in the mid-1980s, when he read a report by marine biologists describing how oyster shells grow. It was known that oysters secrete calcium carbonate as an essential constituent of their hardened exteriors, but the biologists discovered that they also produce a special protein-based agent that molds the mineral into their shells' characteristic shape.
At the time, Koskan was studying the properties of water-soluble polyacrylates. Among other things, these widely used additives help to stem the buildup of damaging mineral-scale deposits (carbonate and sulphate compounds) on the surfaces of industrial water-treatment equipment. What Koskan realized was that the agent produced by the oysters—polyaspartate—inhibits the formation of calcium carbonate and could also therefore control scale. Polyaspartate mimics the scale-inhibiting activity of polyacrylates because it has a similar chemical structure. But because the backbone of polyaspartate is made of peptides (chains of amino acids) rather than the hydrocarbon compounds that constitute polyacrylates' backbone, it is subject to bacterial action (i.e., it is biodegradable).
Polyacrylates, inexpensive and versatile chemicals, are easy to manufacture and process. In laundry detergents, they act as dispersants that keep dirt suspended in the wash water. As a recent alternative to phosphates, which, via wastewater, pollute surface waters, some half a billion pounds of polyacrylates are used in detergents worldwide every year. Additionally, some polyacrylates have chemical configurations with a tremendous affinity for water, making them ideal in superabsorbent materials for disposable products like baby diapers, which currently account for around 2 billion pounds in annual production of polyacrylates. The trouble is, polyacrylates last virtually forever, and these vast quantities of the highly stable substance are being discarded in landfills.
With requests by consumer products companies for environmentally friendly products growing rapidly, Koskan started his own small company and began researching cost-effective ways of producing polyaspartate for industrial use. Soon, leading chemical companies also began researching the issue, with the consensus being that polyaspartate was the most suitable replacement for polyacrylates. Unfortunately, as with many emerging technologies that lack a supporting infrastructure, polyaspartate's price was estimated to be four to five times that of the high-volume-production alternative. Given this, the consumer products industry lost interest in the technology, and the chemical industry shelved it. Koskan's company, however, believing that polyaspartate could nonetheless be market-competitive on its own merits, decided to persevere and focus on specialty application niches. Polyaspartate has since shown unparalleled success at eliminating scale in offshore oil production equipment and is being used by the farming industry to keep chemical fertilizers in the soil longer, reducing pollution of groundwater by the fertilizers. If Koskan's company can show continued success, it may yet help enliven an environmental chemistry sector saddled with a reputation for ineffectiveness and high cost.
Organic chemist Larry Koskan's inspiration arrived in the mid-1980s, when he read a report by marine biologists describing how oyster shells grow. It was known that oysters secrete calcium carbonate as an essential constituent of their hardened exteriors, but the biologists discovered that they also produce a special protein-based agent that molds the mineral into their shells' characteristic shape.
At the time, Koskan was studying the properties of water-soluble polyacrylates. Among other things, these widely used additives help to stem the buildup of damaging mineral-scale deposits (carbonate and sulphate compounds) on the surfaces of industrial water-treatment equipment. What Koskan realized was that the agent produced by the oysters—polyaspartate—inhibits the formation of calcium carbonate and could also therefore control scale. Polyaspartate mimics the scale-inhibiting activity of polyacrylates because it has a similar chemical structure. But because the backbone of polyaspartate is made of peptides (chains of amino acids) rather than the hydrocarbon compounds that constitute polyacrylates' backbone, it is subject to bacterial action (i.e., it is biodegradable).
Polyacrylates, inexpensive and versatile chemicals, are easy to manufacture and process. In laundry detergents, they act as dispersants that keep dirt suspended in the wash water. As a recent alternative to phosphates, which, via wastewater, pollute surface waters, some half a billion pounds of polyacrylates are used in detergents worldwide every year. Additionally, some polyacrylates have chemical configurations with a tremendous affinity for water, making them ideal in superabsorbent materials for disposable products like baby diapers, which currently account for around 2 billion pounds in annual production of polyacrylates. The trouble is, polyacrylates last virtually forever, and these vast quantities of the highly stable substance are being discarded in landfills.
With requests by consumer products companies for environmentally friendly products growing rapidly, Koskan started his own small company and began researching cost-effective ways of producing polyaspartate for industrial use. Soon, leading chemical companies also began researching the issue, with the consensus being that polyaspartate was the most suitable replacement for polyacrylates. Unfortunately, as with many emerging technologies that lack a supporting infrastructure, polyaspartate's price was estimated to be four to five times that of the high-volume-production alternative. Given this, the consumer products industry lost interest in the technology, and the chemical industry shelved it. Koskan's company, however, believing that polyaspartate could nonetheless be market-competitive on its own merits, decided to persevere and focus on specialty application niches. Polyaspartate has since shown unparalleled success at eliminating scale in offshore oil production equipment and is being used by the farming industry to keep chemical fertilizers in the soil longer, reducing pollution of groundwater by the fertilizers. If Koskan's company can show continued success, it may yet help enliven an environmental chemistry sector saddled with a reputation for ineffectiveness and high cost.
The passage most strongly suggests that which one of the following is true of both polyaspartate and polyacrylates?
They perform identically within any industrial application.
They were both discovered as a result of research performed by marine biologists.
The chemical industry was aware of their existence long before industrial applications for either one were developed.
They both have been used to reduce water pollution.
At the time they were first brought to market, leading chemical companies were skeptical about their commercial success.
0 Comments