PrepTest 89, Section 4, Question 21
This passage was adapted from an article published in 2000.
Competition to make computer chips smaller and, consequently, faster and more efficient has driven a technological revolution, fueled economic growth, and rapidly made successive generations of computers obsolete. Yet at the current rate of progress this march toward miniaturization will hit a wall by about 2010—for many, an unthinkable prospect. The laws of physics dictate that, with current methods, properly functioning transistors—the electronic devices that make up computer chips—cannot be made smaller than 25 nanometers (billionths of a meter). In living cells, however, natural chemical processes efficiently and precisely produce extremely complex structures below this size limit, so there may be hope of using some such processes to yield tiny molecules that can either function like transistors or be induced to combine with other materials in carefully controlled ways to construct whole nanocircuits. Much current research is aimed at harnessing DNA to this end, but materials chemist Angela Belcher and physicist Evelyn Hu are investigating a different molecular pattern maker: peptides, amino acid chains that are shorter than proteins.
The project grew out of Belcher's doctoral research on abalone. Her research group discovered in the mid-1990s that a specific peptide causes calcium carbonate to crystallize into the structure found only in the tough abalone shell. From that discovery, Belcher and Hu, Belcher's postdoctoral adviser at the time, realized that if they found peptides able to direct the crystal growth of the semiconductor materials that form transistors, they might have a tool for building nanoscale electronics. However, no known peptide was able to bind to semiconductor materials to cause the development of particular crystalline structures as some peptides did with calcium carbonate. So Belcher, Hu, and their colleagues grew a random assortment of one billion different peptides and tested whether any of them bound to silicon, gallium arsenide, or indium phosphide crystals—three widely used semiconductor materials. They found a few peptides that not only bound exclusively to one of the crystals in the experiment but also latched onto a particular face of the crystal. Through a process resembling accelerated evolution, they developed additional related peptides from those that had the initially promising characteristics.
Hu says that in order to use such a method to assemble a set of circuit-building tools it would be necessary to identify many additional organic compounds that bind to circuit-component materials. The group is making progress on that quest. As they have expanded their targets to 20 more semiconductor materials, their cache of crystal-manipulating peptides has ballooned into the hundreds. They are also designing new peptides that bind to two different crystals at once, acting as a daub of glue. It will take that kind of finesse at the nanoscale to produce self-assembling circuits.
This passage was adapted from an article published in 2000.
Competition to make computer chips smaller and, consequently, faster and more efficient has driven a technological revolution, fueled economic growth, and rapidly made successive generations of computers obsolete. Yet at the current rate of progress this march toward miniaturization will hit a wall by about 2010—for many, an unthinkable prospect. The laws of physics dictate that, with current methods, properly functioning transistors—the electronic devices that make up computer chips—cannot be made smaller than 25 nanometers (billionths of a meter). In living cells, however, natural chemical processes efficiently and precisely produce extremely complex structures below this size limit, so there may be hope of using some such processes to yield tiny molecules that can either function like transistors or be induced to combine with other materials in carefully controlled ways to construct whole nanocircuits. Much current research is aimed at harnessing DNA to this end, but materials chemist Angela Belcher and physicist Evelyn Hu are investigating a different molecular pattern maker: peptides, amino acid chains that are shorter than proteins.
The project grew out of Belcher's doctoral research on abalone. Her research group discovered in the mid-1990s that a specific peptide causes calcium carbonate to crystallize into the structure found only in the tough abalone shell. From that discovery, Belcher and Hu, Belcher's postdoctoral adviser at the time, realized that if they found peptides able to direct the crystal growth of the semiconductor materials that form transistors, they might have a tool for building nanoscale electronics. However, no known peptide was able to bind to semiconductor materials to cause the development of particular crystalline structures as some peptides did with calcium carbonate. So Belcher, Hu, and their colleagues grew a random assortment of one billion different peptides and tested whether any of them bound to silicon, gallium arsenide, or indium phosphide crystals—three widely used semiconductor materials. They found a few peptides that not only bound exclusively to one of the crystals in the experiment but also latched onto a particular face of the crystal. Through a process resembling accelerated evolution, they developed additional related peptides from those that had the initially promising characteristics.
Hu says that in order to use such a method to assemble a set of circuit-building tools it would be necessary to identify many additional organic compounds that bind to circuit-component materials. The group is making progress on that quest. As they have expanded their targets to 20 more semiconductor materials, their cache of crystal-manipulating peptides has ballooned into the hundreds. They are also designing new peptides that bind to two different crystals at once, acting as a daub of glue. It will take that kind of finesse at the nanoscale to produce self-assembling circuits.
This passage was adapted from an article published in 2000.
Competition to make computer chips smaller and, consequently, faster and more efficient has driven a technological revolution, fueled economic growth, and rapidly made successive generations of computers obsolete. Yet at the current rate of progress this march toward miniaturization will hit a wall by about 2010—for many, an unthinkable prospect. The laws of physics dictate that, with current methods, properly functioning transistors—the electronic devices that make up computer chips—cannot be made smaller than 25 nanometers (billionths of a meter). In living cells, however, natural chemical processes efficiently and precisely produce extremely complex structures below this size limit, so there may be hope of using some such processes to yield tiny molecules that can either function like transistors or be induced to combine with other materials in carefully controlled ways to construct whole nanocircuits. Much current research is aimed at harnessing DNA to this end, but materials chemist Angela Belcher and physicist Evelyn Hu are investigating a different molecular pattern maker: peptides, amino acid chains that are shorter than proteins.
The project grew out of Belcher's doctoral research on abalone. Her research group discovered in the mid-1990s that a specific peptide causes calcium carbonate to crystallize into the structure found only in the tough abalone shell. From that discovery, Belcher and Hu, Belcher's postdoctoral adviser at the time, realized that if they found peptides able to direct the crystal growth of the semiconductor materials that form transistors, they might have a tool for building nanoscale electronics. However, no known peptide was able to bind to semiconductor materials to cause the development of particular crystalline structures as some peptides did with calcium carbonate. So Belcher, Hu, and their colleagues grew a random assortment of one billion different peptides and tested whether any of them bound to silicon, gallium arsenide, or indium phosphide crystals—three widely used semiconductor materials. They found a few peptides that not only bound exclusively to one of the crystals in the experiment but also latched onto a particular face of the crystal. Through a process resembling accelerated evolution, they developed additional related peptides from those that had the initially promising characteristics.
Hu says that in order to use such a method to assemble a set of circuit-building tools it would be necessary to identify many additional organic compounds that bind to circuit-component materials. The group is making progress on that quest. As they have expanded their targets to 20 more semiconductor materials, their cache of crystal-manipulating peptides has ballooned into the hundreds. They are also designing new peptides that bind to two different crystals at once, acting as a daub of glue. It will take that kind of finesse at the nanoscale to produce self-assembling circuits.
This passage was adapted from an article published in 2000.
Competition to make computer chips smaller and, consequently, faster and more efficient has driven a technological revolution, fueled economic growth, and rapidly made successive generations of computers obsolete. Yet at the current rate of progress this march toward miniaturization will hit a wall by about 2010—for many, an unthinkable prospect. The laws of physics dictate that, with current methods, properly functioning transistors—the electronic devices that make up computer chips—cannot be made smaller than 25 nanometers (billionths of a meter). In living cells, however, natural chemical processes efficiently and precisely produce extremely complex structures below this size limit, so there may be hope of using some such processes to yield tiny molecules that can either function like transistors or be induced to combine with other materials in carefully controlled ways to construct whole nanocircuits. Much current research is aimed at harnessing DNA to this end, but materials chemist Angela Belcher and physicist Evelyn Hu are investigating a different molecular pattern maker: peptides, amino acid chains that are shorter than proteins.
The project grew out of Belcher's doctoral research on abalone. Her research group discovered in the mid-1990s that a specific peptide causes calcium carbonate to crystallize into the structure found only in the tough abalone shell. From that discovery, Belcher and Hu, Belcher's postdoctoral adviser at the time, realized that if they found peptides able to direct the crystal growth of the semiconductor materials that form transistors, they might have a tool for building nanoscale electronics. However, no known peptide was able to bind to semiconductor materials to cause the development of particular crystalline structures as some peptides did with calcium carbonate. So Belcher, Hu, and their colleagues grew a random assortment of one billion different peptides and tested whether any of them bound to silicon, gallium arsenide, or indium phosphide crystals—three widely used semiconductor materials. They found a few peptides that not only bound exclusively to one of the crystals in the experiment but also latched onto a particular face of the crystal. Through a process resembling accelerated evolution, they developed additional related peptides from those that had the initially promising characteristics.
Hu says that in order to use such a method to assemble a set of circuit-building tools it would be necessary to identify many additional organic compounds that bind to circuit-component materials. The group is making progress on that quest. As they have expanded their targets to 20 more semiconductor materials, their cache of crystal-manipulating peptides has ballooned into the hundreds. They are also designing new peptides that bind to two different crystals at once, acting as a daub of glue. It will take that kind of finesse at the nanoscale to produce self-assembling circuits.
The passage most strongly supports which one of the following?
Some peptides that bind to gallium arsenide also bind to indium phosphide.
Researchers besides Belcher and Hu and their colleagues have studied the possibility of using peptides in the assembly of nanocircuits.
Neither Belcher nor Hu has done major scientific research on organic compounds other than peptides.
Silicon, gallium arsenide, and indium phosphide are not the only semiconductor materials to which peptides have been found to bind.
Peptides have been used in industrial applications that are not related to semiconductors.
0 Comments