PrepTest 83, Section 4, Question 6

Difficulty: 
Passage
Game
2

In a typical Hollywood action movie, the hero skirts death to complete a mission. Bad guys shoot, cars explode, objects fall from the sky, but all just miss. If any one of those things happened just a little differently, the hero would be dead. Yet the hero survives.

In some respects, the story of our universe resembles an action movie. A slight change to any one of the laws of physics would likely have caused some disaster that would have disrupted the normal evolution of the universe and made life impossible. For example, if the strong nuclear force had been slightly stronger or weaker, stars would have forged very little of the carbon that seems necessary to form planets and living things. Indeed, it seems that in order for a universe to support life, the laws of physics must be so finely tuned that the very existence of such a universe becomes improbable.

Some cosmologists have tried to reconcile the existence of our universe with the seeming improbability of its existence by hypothesizing that our universe is but one of many universes within a wider array called the multiverse. In almost all of those universes, the laws of physics might not allow the formation of matter as we know it and therefore of life. But given the sheer number of possibilities, nature would have had a good chance to get the "right" set of laws at least once.

But just how exceptional is the set of physical laws governing our universe? The view that the laws of physics are finely tuned arises largely from the difficulty scientists have had in identifying alternative sets of laws that would be compatible with life.

The conventional way scientists explore whether a particular constant of physics is finely tuned is to tweak it while leaving all other constants unaltered. The scientists then "play the movie" of that universe—they do calculations, what-if scenarios, or computer simulations—to see what disasters occur. But there is no reason to tweak just one parameter at a time. By manipulating multiple constants at once, my colleague and I have identified numerous scenarios—hypothetical universes—where the physical laws would be very different from our own and yet compatible with the formation of complex structures and perhaps even some forms of intelligent life.

Fine tuning has been invoked by some cosmologists as indirect evidence for the multiverse. Do our findings therefore call the concept of the multiverse into question? I do not think this is necessarily the case for two reasons. First, certain models of the birth of the universe would lead us to expect the existence of something like the multiverse. Secondly, the multiverse concept may well prove to be the source of solutions to certain other long-standing puzzles in cosmology.

In a typical Hollywood action movie, the hero skirts death to complete a mission. Bad guys shoot, cars explode, objects fall from the sky, but all just miss. If any one of those things happened just a little differently, the hero would be dead. Yet the hero survives.

In some respects, the story of our universe resembles an action movie. A slight change to any one of the laws of physics would likely have caused some disaster that would have disrupted the normal evolution of the universe and made life impossible. For example, if the strong nuclear force had been slightly stronger or weaker, stars would have forged very little of the carbon that seems necessary to form planets and living things. Indeed, it seems that in order for a universe to support life, the laws of physics must be so finely tuned that the very existence of such a universe becomes improbable.

Some cosmologists have tried to reconcile the existence of our universe with the seeming improbability of its existence by hypothesizing that our universe is but one of many universes within a wider array called the multiverse. In almost all of those universes, the laws of physics might not allow the formation of matter as we know it and therefore of life. But given the sheer number of possibilities, nature would have had a good chance to get the "right" set of laws at least once.

But just how exceptional is the set of physical laws governing our universe? The view that the laws of physics are finely tuned arises largely from the difficulty scientists have had in identifying alternative sets of laws that would be compatible with life.

The conventional way scientists explore whether a particular constant of physics is finely tuned is to tweak it while leaving all other constants unaltered. The scientists then "play the movie" of that universe—they do calculations, what-if scenarios, or computer simulations—to see what disasters occur. But there is no reason to tweak just one parameter at a time. By manipulating multiple constants at once, my colleague and I have identified numerous scenarios—hypothetical universes—where the physical laws would be very different from our own and yet compatible with the formation of complex structures and perhaps even some forms of intelligent life.

Fine tuning has been invoked by some cosmologists as indirect evidence for the multiverse. Do our findings therefore call the concept of the multiverse into question? I do not think this is necessarily the case for two reasons. First, certain models of the birth of the universe would lead us to expect the existence of something like the multiverse. Secondly, the multiverse concept may well prove to be the source of solutions to certain other long-standing puzzles in cosmology.

In a typical Hollywood action movie, the hero skirts death to complete a mission. Bad guys shoot, cars explode, objects fall from the sky, but all just miss. If any one of those things happened just a little differently, the hero would be dead. Yet the hero survives.

In some respects, the story of our universe resembles an action movie. A slight change to any one of the laws of physics would likely have caused some disaster that would have disrupted the normal evolution of the universe and made life impossible. For example, if the strong nuclear force had been slightly stronger or weaker, stars would have forged very little of the carbon that seems necessary to form planets and living things. Indeed, it seems that in order for a universe to support life, the laws of physics must be so finely tuned that the very existence of such a universe becomes improbable.

Some cosmologists have tried to reconcile the existence of our universe with the seeming improbability of its existence by hypothesizing that our universe is but one of many universes within a wider array called the multiverse. In almost all of those universes, the laws of physics might not allow the formation of matter as we know it and therefore of life. But given the sheer number of possibilities, nature would have had a good chance to get the "right" set of laws at least once.

But just how exceptional is the set of physical laws governing our universe? The view that the laws of physics are finely tuned arises largely from the difficulty scientists have had in identifying alternative sets of laws that would be compatible with life.

The conventional way scientists explore whether a particular constant of physics is finely tuned is to tweak it while leaving all other constants unaltered. The scientists then "play the movie" of that universe—they do calculations, what-if scenarios, or computer simulations—to see what disasters occur. But there is no reason to tweak just one parameter at a time. By manipulating multiple constants at once, my colleague and I have identified numerous scenarios—hypothetical universes—where the physical laws would be very different from our own and yet compatible with the formation of complex structures and perhaps even some forms of intelligent life.

Fine tuning has been invoked by some cosmologists as indirect evidence for the multiverse. Do our findings therefore call the concept of the multiverse into question? I do not think this is necessarily the case for two reasons. First, certain models of the birth of the universe would lead us to expect the existence of something like the multiverse. Secondly, the multiverse concept may well prove to be the source of solutions to certain other long-standing puzzles in cosmology.

In a typical Hollywood action movie, the hero skirts death to complete a mission. Bad guys shoot, cars explode, objects fall from the sky, but all just miss. If any one of those things happened just a little differently, the hero would be dead. Yet the hero survives.

In some respects, the story of our universe resembles an action movie. A slight change to any one of the laws of physics would likely have caused some disaster that would have disrupted the normal evolution of the universe and made life impossible. For example, if the strong nuclear force had been slightly stronger or weaker, stars would have forged very little of the carbon that seems necessary to form planets and living things. Indeed, it seems that in order for a universe to support life, the laws of physics must be so finely tuned that the very existence of such a universe becomes improbable.

Some cosmologists have tried to reconcile the existence of our universe with the seeming improbability of its existence by hypothesizing that our universe is but one of many universes within a wider array called the multiverse. In almost all of those universes, the laws of physics might not allow the formation of matter as we know it and therefore of life. But given the sheer number of possibilities, nature would have had a good chance to get the "right" set of laws at least once.

But just how exceptional is the set of physical laws governing our universe? The view that the laws of physics are finely tuned arises largely from the difficulty scientists have had in identifying alternative sets of laws that would be compatible with life.

The conventional way scientists explore whether a particular constant of physics is finely tuned is to tweak it while leaving all other constants unaltered. The scientists then "play the movie" of that universe—they do calculations, what-if scenarios, or computer simulations—to see what disasters occur. But there is no reason to tweak just one parameter at a time. By manipulating multiple constants at once, my colleague and I have identified numerous scenarios—hypothetical universes—where the physical laws would be very different from our own and yet compatible with the formation of complex structures and perhaps even some forms of intelligent life.

Fine tuning has been invoked by some cosmologists as indirect evidence for the multiverse. Do our findings therefore call the concept of the multiverse into question? I do not think this is necessarily the case for two reasons. First, certain models of the birth of the universe would lead us to expect the existence of something like the multiverse. Secondly, the multiverse concept may well prove to be the source of solutions to certain other long-standing puzzles in cosmology.

Question
6

Which one of the following most accurately states the main point of the passage?

Although the universe seems finely tuned for the existence of life, there may be more sets of physical laws that would be compatible with life than commonly thought.

Although the multiverse hypothesis was developed to explain the apparent fine tuning of the physical laws of our universe, it may be useful for explaining other kinds of issues in cosmology.

When scientists have tried modeling hypothetical universes by altering physical laws, they have been unable to find alternate sets of laws that are consistent with life.

The improbability of life occurring in the universe supports the idea that our universe is just one of many universes in a broader multiverse.

The story of our universe resembles an action movie in that, despite all of the circumstances that could have had disastrous consequences for the emergence of life, life exists.

A
Raise Hand   ✋

Explanations

Main point

We're asked about the main point of the passage. As soon as you finish reading the passage, do yourself a favor and predict the main point. You'll have one the vast majority of the time and it'll reinforce your understanding.

I want something like, "Our universe physics seems fine-tuned to support life the way action movies are directed to have the hero escape, but it's possible other physical laws support life across multiverse."

This would brush up against every big-picture idea.

Let's go find it.

A

Yeah, even simpler than what I predicted, but this works. It describes why the author sat down to write this essay.

B

Nah, this misses the big picture. Our author isn't trying to argue for the multiverse hypothesis explaining other cosmological issues.

C

Nope, way too narrow. This isn't even the main point of the paragraph in which these ideas are brought up.

D

Nah, sort of like B, this misses the bigger picture. Our author is interested in exploring the relationship between our seemingly fine-tuned physics and the possibility of life in other universes where those laws might be different.

E

No. Like C, way too narrow. The author only brought up action movies as an analogy for understanding how seemingly "directed" the laws of physics happen to be in our universe.

0 Comments

Active Here: 0
Be the first to leave a comment.
Loading
Someone is typing...
No Name
Set
4 years ago
Admin
(Edited)
This is the actual comment. It can be long or short. And must contain only text information.
No Name
Set
2 years ago
Admin
(Edited)
This is the actual comment. It's can be long or short. And must contain only text information.
Load More
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Load More
Leave a comment
Join the conversation
You need the Classroom Plan to comment.
Upgrade