PrepTest 52, Section 2, Question 7
Inertia affects the flow of water pumped through a closed system of pipes. When the pump is first switched on, the water, which has mass, takes time to reach full speed. When the pump is switched off, inertia causes the decrease in the water flow to be gradual. The effects of inductance in electrical circuits are similar to the effects of inertia in water pipes.
Inertia affects the flow of water pumped through a closed system of pipes. When the pump is first switched on, the water, which has mass, takes time to reach full speed. When the pump is switched off, inertia causes the decrease in the water flow to be gradual. The effects of inductance in electrical circuits are similar to the effects of inertia in water pipes.
Inertia affects the flow of water pumped through a closed system of pipes. When the pump is first switched on, the water, which has mass, takes time to reach full speed. When the pump is switched off, inertia causes the decrease in the water flow to be gradual. The effects of inductance in electrical circuits are similar to the effects of inertia in water pipes.
Inertia affects the flow of water pumped through a closed system of pipes. When the pump is first switched on, the water, which has mass, takes time to reach full speed. When the pump is switched off, inertia causes the decrease in the water flow to be gradual. The effects of inductance in electrical circuits are similar to the effects of inertia in water pipes.
The information above provides the most support for which one of the following?
The rate at which electrical current flows is affected by inductance.
The flow of electrical current in a circuit requires inertia.
Inertia in the flow of water pumped by an electrically powered pump is caused by inductance in the pump's circuits.
Electrical engineers try to minimize the effects of inductance in electrical circuits.
When a water pump is switched off it continues to pump water for a second or two.
0 Comments