PrepTest 51, Section 2, Question 24
The supernova event of 1987 is interesting in that there is still no evidence of the neutron star that current theory says should have remained after a supernova of that size. This is in spite of the fact that many of the most sensitive instruments ever developed have searched for the tell-tale pulse of radiation that neutron stars emit. Thus, current theory is wrong in claiming that supernovas of a certain size always produce neutron stars.
The supernova event of 1987 is interesting in that there is still no evidence of the neutron star that current theory says should have remained after a supernova of that size. This is in spite of the fact that many of the most sensitive instruments ever developed have searched for the tell-tale pulse of radiation that neutron stars emit. Thus, current theory is wrong in claiming that supernovas of a certain size always produce neutron stars.
The supernova event of 1987 is interesting in that there is still no evidence of the neutron star that current theory says should have remained after a supernova of that size. This is in spite of the fact that many of the most sensitive instruments ever developed have searched for the tell-tale pulse of radiation that neutron stars emit. Thus, current theory is wrong in claiming that supernovas of a certain size always produce neutron stars.
The supernova event of 1987 is interesting in that there is still no evidence of the neutron star that current theory says should have remained after a supernova of that size. This is in spite of the fact that many of the most sensitive instruments ever developed have searched for the tell-tale pulse of radiation that neutron stars emit. Thus, current theory is wrong in claiming that supernovas of a certain size always produce neutron stars.
Which one of the following, if true, most strengthens the argument?
Most supernova remnants that astronomers have detected have a neutron star nearby.
Sensitive astronomical instruments have detected neutron stars much farther away than the location of the 1987 supernova.
The supernova of 1987 was the first that scientists were able to observe in progress.
Several important features of the 1987 supernova are correctly predicted by the current theory.
Some neutron stars are known to have come into existence by a cause other than a supernova explosion.
0 Comments