PrepTest 48, Section 4, Question 20

Difficulty: 
Passage
Game
4

The first thing any embryo must do before it can develop into an organism is establish early polarity—that is, it must set up a way to distinguish its top from its bottom and its back from its front. The mechanisms that establish the earliest spatial configurations in an embryo are far less similar across life forms than those relied on for later development, as in the formation of limbs or a nervous system: for example, the signals that the developing fruit fly uses to know its front end from its back end turn out to be radically different from those that the nematode, a type of worm, relies on, and both appear to be quite different from the polarity signals in the development of humans and other mammals.

In the fruit fly, polarity is established by signals inscribed in the yolklike cytoplasm of the egg before fertilization, so that when the sperm contributes its genetic material, everything is already set to go. Given all the positional information that must be distributed throughout the cell, it takes a fruit fly a week to make an egg, but once that well-appointed egg is fertilized, it is transformed from a single cell into a crawling larva in a day. By contrast, in the embryonic development of certain nematodes, the point where the sperm enters the egg appears to provide crucial positional information. Once that information is present, little bundles of proteins called p-granules, initially distributed uniformly throughout the cytoplasm, begin to congregate at one end of the yolk; when the fertilized egg divides, one of the resulting cells gets all the p-granules. The presence or absence of these granules in cells appears to help determine whether their subsequent divisions will lead to the formation of the worm's front or back half. A similar sperm-driven mechanism is also thought to establish body orientation in some comparatively simple vertebrates such as frogs, though apparently not in more complex vertebrates such as mammals. Research indicates that in human and other mammalian embryos, polarity develops much later, as many stages of cell division occur with no apparent asymmetries among cells. Yet how polarity is established in mammals is currently a tempting mystery to researchers.

Once an embryo establishes polarity, it relies on sets of essential genes that are remarkably similar among all life forms for elaboration of its parts. There is an astonishing conservation of mechanism in this process: the genes that help make eyes in flies are similar to the genes that make eyes in mice or humans. So a seeming paradox arises: when embryos of different species are at the one- or few-cell stage and still appear almost identical, the mechanisms of development they use are vastly different; yet when they start growing brains or extremities and become identifiable as distinct species, the developmental mechanisms they use are remarkably similar.

The first thing any embryo must do before it can develop into an organism is establish early polarity—that is, it must set up a way to distinguish its top from its bottom and its back from its front. The mechanisms that establish the earliest spatial configurations in an embryo are far less similar across life forms than those relied on for later development, as in the formation of limbs or a nervous system: for example, the signals that the developing fruit fly uses to know its front end from its back end turn out to be radically different from those that the nematode, a type of worm, relies on, and both appear to be quite different from the polarity signals in the development of humans and other mammals.

In the fruit fly, polarity is established by signals inscribed in the yolklike cytoplasm of the egg before fertilization, so that when the sperm contributes its genetic material, everything is already set to go. Given all the positional information that must be distributed throughout the cell, it takes a fruit fly a week to make an egg, but once that well-appointed egg is fertilized, it is transformed from a single cell into a crawling larva in a day. By contrast, in the embryonic development of certain nematodes, the point where the sperm enters the egg appears to provide crucial positional information. Once that information is present, little bundles of proteins called p-granules, initially distributed uniformly throughout the cytoplasm, begin to congregate at one end of the yolk; when the fertilized egg divides, one of the resulting cells gets all the p-granules. The presence or absence of these granules in cells appears to help determine whether their subsequent divisions will lead to the formation of the worm's front or back half. A similar sperm-driven mechanism is also thought to establish body orientation in some comparatively simple vertebrates such as frogs, though apparently not in more complex vertebrates such as mammals. Research indicates that in human and other mammalian embryos, polarity develops much later, as many stages of cell division occur with no apparent asymmetries among cells. Yet how polarity is established in mammals is currently a tempting mystery to researchers.

Once an embryo establishes polarity, it relies on sets of essential genes that are remarkably similar among all life forms for elaboration of its parts. There is an astonishing conservation of mechanism in this process: the genes that help make eyes in flies are similar to the genes that make eyes in mice or humans. So a seeming paradox arises: when embryos of different species are at the one- or few-cell stage and still appear almost identical, the mechanisms of development they use are vastly different; yet when they start growing brains or extremities and become identifiable as distinct species, the developmental mechanisms they use are remarkably similar.

The first thing any embryo must do before it can develop into an organism is establish early polarity—that is, it must set up a way to distinguish its top from its bottom and its back from its front. The mechanisms that establish the earliest spatial configurations in an embryo are far less similar across life forms than those relied on for later development, as in the formation of limbs or a nervous system: for example, the signals that the developing fruit fly uses to know its front end from its back end turn out to be radically different from those that the nematode, a type of worm, relies on, and both appear to be quite different from the polarity signals in the development of humans and other mammals.

In the fruit fly, polarity is established by signals inscribed in the yolklike cytoplasm of the egg before fertilization, so that when the sperm contributes its genetic material, everything is already set to go. Given all the positional information that must be distributed throughout the cell, it takes a fruit fly a week to make an egg, but once that well-appointed egg is fertilized, it is transformed from a single cell into a crawling larva in a day. By contrast, in the embryonic development of certain nematodes, the point where the sperm enters the egg appears to provide crucial positional information. Once that information is present, little bundles of proteins called p-granules, initially distributed uniformly throughout the cytoplasm, begin to congregate at one end of the yolk; when the fertilized egg divides, one of the resulting cells gets all the p-granules. The presence or absence of these granules in cells appears to help determine whether their subsequent divisions will lead to the formation of the worm's front or back half. A similar sperm-driven mechanism is also thought to establish body orientation in some comparatively simple vertebrates such as frogs, though apparently not in more complex vertebrates such as mammals. Research indicates that in human and other mammalian embryos, polarity develops much later, as many stages of cell division occur with no apparent asymmetries among cells. Yet how polarity is established in mammals is currently a tempting mystery to researchers.

Once an embryo establishes polarity, it relies on sets of essential genes that are remarkably similar among all life forms for elaboration of its parts. There is an astonishing conservation of mechanism in this process: the genes that help make eyes in flies are similar to the genes that make eyes in mice or humans. So a seeming paradox arises: when embryos of different species are at the one- or few-cell stage and still appear almost identical, the mechanisms of development they use are vastly different; yet when they start growing brains or extremities and become identifiable as distinct species, the developmental mechanisms they use are remarkably similar.

The first thing any embryo must do before it can develop into an organism is establish early polarity—that is, it must set up a way to distinguish its top from its bottom and its back from its front. The mechanisms that establish the earliest spatial configurations in an embryo are far less similar across life forms than those relied on for later development, as in the formation of limbs or a nervous system: for example, the signals that the developing fruit fly uses to know its front end from its back end turn out to be radically different from those that the nematode, a type of worm, relies on, and both appear to be quite different from the polarity signals in the development of humans and other mammals.

In the fruit fly, polarity is established by signals inscribed in the yolklike cytoplasm of the egg before fertilization, so that when the sperm contributes its genetic material, everything is already set to go. Given all the positional information that must be distributed throughout the cell, it takes a fruit fly a week to make an egg, but once that well-appointed egg is fertilized, it is transformed from a single cell into a crawling larva in a day. By contrast, in the embryonic development of certain nematodes, the point where the sperm enters the egg appears to provide crucial positional information. Once that information is present, little bundles of proteins called p-granules, initially distributed uniformly throughout the cytoplasm, begin to congregate at one end of the yolk; when the fertilized egg divides, one of the resulting cells gets all the p-granules. The presence or absence of these granules in cells appears to help determine whether their subsequent divisions will lead to the formation of the worm's front or back half. A similar sperm-driven mechanism is also thought to establish body orientation in some comparatively simple vertebrates such as frogs, though apparently not in more complex vertebrates such as mammals. Research indicates that in human and other mammalian embryos, polarity develops much later, as many stages of cell division occur with no apparent asymmetries among cells. Yet how polarity is established in mammals is currently a tempting mystery to researchers.

Once an embryo establishes polarity, it relies on sets of essential genes that are remarkably similar among all life forms for elaboration of its parts. There is an astonishing conservation of mechanism in this process: the genes that help make eyes in flies are similar to the genes that make eyes in mice or humans. So a seeming paradox arises: when embryos of different species are at the one- or few-cell stage and still appear almost identical, the mechanisms of development they use are vastly different; yet when they start growing brains or extremities and become identifiable as distinct species, the developmental mechanisms they use are remarkably similar.

Question
20

Which one of the following most accurately expresses the main point of the passage?

Species differ more in the mechanisms that determine the spatial orientation in an embryo than they do in their overall genetic makeup.

Embryos determine their front from their back and top from bottom by different methods, depending on whether the organism is simple or more complex.

While very similar genes help determine the later embryonic development of all organisms, the genetic mechanisms by which embryos establish early polarity vary dramatically from one organism to the next.

The mechanisms by which embryos establish early polarity differ depending on whether the signals by which polarity is achieved are inscribed in the cytoplasm of the egg or the p-granules of the sperm.

Despite their apparent dissimilarity from species to species, the means by which organisms establish polarity rely on essentially the same genetic mechanisms.

C
Raise Hand   ✋

Explanations

Explanation coming soon! Want one now? Hit the Raise Hand button.

0 Comments

Active Here: 0
Be the first to leave a comment.
Loading
Someone is typing...
No Name
Set
4 years ago
Admin
(Edited)
This is the actual comment. It can be long or short. And must contain only text information.
No Name
Set
2 years ago
Admin
(Edited)
This is the actual comment. It's can be long or short. And must contain only text information.
Load More
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Load More
Leave a comment
Join the conversation
You need the Classroom Plan to comment.
Upgrade